
RISC-V	Graphics	ISA	

Preliminary	Design	



Who	we	are?	
•  We	are	a	group	of	enthusiasts	who	espouse	powerful	but	low-

cost	open-source	hardware	for	students,	makers,	commercial	
users	and	anyone	else	interested	in	customizable	hardware	

•  Atif	Zafar	(Pixilica)	
–  www.pixilica.com	

•  Grant	Jennings	(GOWIN	Semiconductor)	
–  www.gowinsemi.com	

•  Ted	Marena	(CHIPS	Alliance	and	Western	Digital)	
–  www.chipsalliance.org	



RISC-V	Graphics	ISA	
•  3D	graphics	is	now	a	standard	part	of	many	processor	

designs	(Intel,	ARM,	Qualcomm,	Samsung	etc.)	for	
consumer	devices	

•  The	RISC-V	ISA	is	rapidly	gaining	industry	backing	due	to	its	
open-source	license	

•  Some	industry	support	for	graphics	
–  Imagination	Technologies	PowerVR	
–  Libre	Open-Source	GPU	effort	

•  A	key	part	of	the	RISC-V	ISA	is	that	it	is	“extensible”	

	



RISC-V	ISA	
•  RISC-V	has	incremental	modular	ISA’s	that	add	
functionality	and	complexity	to	a	core	design:	
–  Base	Integer:	RV32I	and	RV64I	
–  Add:	

•  M:	Integer	Multiply/Divide	
•  A:	Atomic	Instructions	(for	thread	synchronization)	
•  F:	Single-Precision	Floating	Point	
•  D:	Double-Precision	Floating	Point	
•  G:	IMAFD	(all	of	the	above	extensions	combined)	
•  C:	Compressed	Instruction	Set	(for	atomic	thread	sync	ops)	
•  Q:	128-bit	quad-wide	floating	point	format	

•  V:	Vector	Extensions	(proposed)	





RISC-V	Vector	Extensions	
•  Instructions	are	defined	for	vector:	

–  Data	Movement	
•  Move/load/store	

–  Arithmetic	
•  Add/Sub	
•  Mul/Madd/Msub/Div	
•  Min/Max/Clip	
•  Sqrt/Dot	prod	

–  Logical	ops	
•  Shift/Rotate	
•  And/Or/Xor/Merge	

–  Branching	
•  Gr/Le/Eq	

•  https://github.com/riscv/riscv-v-spec	



RISC	for	Graphics	
•  We	propose	a	new	set	of	graphics	instructions	designed	for	3d	

graphics	and	media	processing	

•  These	new	instructions	build	on	the	base	vector	instruction	set.	We	
add	support	for	new	data	types	that	are	graphics	specific.	

•  We	will	denote	this	as	the	“X”	extension	so	it	doesn’t	interfere	with	
other	RISC-V	nomenclature.		

•  Advantage	is	this	is	a	fused	CPU-GPU	ISA	

•  We	call	this	RV32X	



RV32X	

•  Motivation	and	Goals:	
– We	want	small,	area-efficient	designs	
–  Custom	programmability	and	extensibility	
–  Low	cost	of	IP	ownership	and	development	
– Does	not	compete	with	commercial	offerings	
–  FPGA	and	ASIC	targets	
–  Free	and	open-source	
–  Targeted	to	low-power	microcontrollers	
–  Strive	to	be	DirectX	(Shader	Model	5)	and	OpenGL/ES	
and	Vulkan	compliant	as	we	progress	development	



RV32X	ISA	
•  Instructions	will	be	32-bits	long	(compliant	with	RISC-V	ISA)	

•  Programming	model	is	SIMD	with	some	scalar	operations	for	special	functions	

•  Hardware	will	be	a	graphics	vector	accelerator	attached	to	a	host	RISC-V	core	

•  Instruction	decode	will	happen	partially	on	the	host	and	partially	in	the	accelerator	
using	a	special	bit	field	in	the	instruction	

•  Architecture	will	support	FPGA	and	ASIC	designs	as	with	the	base	RISC-V	ISA	
–  16-bit	fixed	point	(ideal	for	FPGAs)	
–  32-bit	floating	point	(ASICs	or	FPGAs)	

•  Architecture	defines	a	set	of:		
	–					Hardwired	base	graphics	and	media	instructions		
	–					User-Configurable	RAM	based	micro-coded	instructions		
								for	a	run-time	application-defined	ISA	extension		



RV32X	Data	Types	
•  Scalars	(8,	16,	24	and	32	bit	fixed	and	floats)	

–  Transcendentals	(sincos,	atan,	pow,	exp,	log,	rcp,	rsq,	sqrt	etc.)	
•  Vectors	(RV32-V)	

–  We	will	support	2-4	element	(8,	16	or	32	bits/element)	vector	operations	
along	with	specialized	instructions	for	a	general	3d	graphics	rendering	pipeline	

–  Points,	Pixels,	Texels	(essentially	“special”	vectors)	
•  XYZW	points	(64	and	128	bit	fixed	and	floats)	
•  RGBA	pixels	(8,	16,	24	and	32	bit	pixels)	
•  UVW	texels	(8,	16	bits	per	component)	
•  Lights	and	Materials	(Ia,	ka,	Id,	kd,	Is,	ks…)	

•  Matrices	
–  2x2,	3x3	and	4x4	matrices	will	be	supported	as	a	native	data	type	along	with	

memory	structures	to	support	them	
–  Attribute	Vectors	(XYZWRGBAUVWHNxNyNz…)	

•  Essentially	represented	in	a	4x4	matrix	



RV32X	Register	Set	
•  136-bit	“configurable”	vector	registers	

–  Splits:	4x32b,	8x16b	or	16x8b	
–  8-bit	Configuration	bits	define	data	types:	

•  Pixels	(RGBA)	
•  Points	(XYZW)	
•  Vectors	(2,3,4	components)	
•  Matrix	stacks	(16	component	across	registers)	
•  Lighting,	Viewing,	Projection	Parameters	
•  Texture	Coordinates	
•  Pixel	and	Frame-buffer	Operations	(ROPs,	bitblt)	
•  Attribute	Arrays	and	Differentials	
•  Scalar	constants	and	variables	(i.e.	math	functions)	

•  Any	other	user	defined	types	
–  Have	256	possible	data	types	that	can	be	application	defined	
–  For	example	AOS	or	SOA	formats	(ArrayOfStructure	or	StructureOfArray)	
	

•  Register	Files	will	support	random	access	by	register	name	or	using	a	push-pop	
FIFO	like	functionality.		



RV32X	Vector/Math	Instructions	
•  Vector/Matrix	Processing:	2,3,4	components	

–  SetVec/SetMat	
–  Push/Pop	(vec/mat)	
–  MatAddSub/MatMul	
–  VecMat/ScalarVec	
–  Dot/Cross	
–  Dist/Len	
–  Trans/Inv/Det/Norm	
–  Swz	(swizzle	components,	bits)	
–  Lerp/Slerp	

•  Transcendental	Math	(scalar)	
–  Sincos,	atan,	exp,	pow,	log,	rcp,	rsq,	sqrt,	cordic	
–  Min/Max/Rnd/Floor/Ceil/Lerp/Slerp	



RV32X	Pixel/Texture	Instructions	
•  Pixel	Instructions	

–  SetPix/ClrPix/GetPix	
–  Blend	
–  Ztest	
–  ROP	

•  Texture	Instructions	
–  Tex2d,	Tex3d	
–  TexEnv	
–  TexGen	
–  MipMap	
–  Persp	
–  TexLoad	
–  TexCodec	



RV32X	Frame	Buffer	Instructions	
•  Frame	Buffer	Instructions	
–  SetZ/ClrZ	
–  SetArea/ClrArea	
–  Sync/Scanout	
–  Compress/Decomp	
–  BitBlt	
–  Improc	
–  ConfigBuffer	

•  Frame	Buffer	itself	can	be	configured:	
–  Pixel	Buffer,	Geometry	Buffer,	Texture	Buffer,	A-Buffer,	
etc.	



RV32X	Graphics	Instructions	
•  Optional	Graphics	Instructions	(micro-coded)	

–  ModelView	
–  Backface	
–  Lookat	
–  Proj	
–  Clip2/Clip3	
–  Lit	(a,d,s)	
–  Persp	
–  InterpStep	(i.e.	Bresenham	DDA	or	scanline	attributes)	
–  Window	
–  TexMap	
–  Z-Test	
–  AlphaBlend	
–  FragMerge	

•  MicroCode	Instructions	
–  LoadMicroCode	(instruction	to	load	custom	micro-instructions	into	ucode	RAM)	
–  ClearMicroCode	



Advantages	of	Fused	CPU-GPU	ISA	
•  Can	implement	a	standard	graphics	pipeline	in	microcode	
•  Support	for	Custom	Shaders	
•  Can	implement	Ray-Tracing	extensions	
•  Vector	support	for	Numerical	Simulations	
•  8-bit	integer	data	types	for	AI/Machine	Learning	
•  Can	implement	Custom	rasterizers	

–  Splines	
–  SubDiv	Surfaces	
–  Patches	

•  Can	implement	Custom	pipeline	“stages”	
–  Custom	geometry/pixel/frame	buffer	stages	
–  Custom	tessellators	
–  Custom	instancing	operations	



RV32X	Reference	Implementation	
•  Instruction/Data	SRAM	Cache	(32KB)	
•  Microcode	SRAM(8KB)	
•  Dual	Function	Instruction	Decoder	
– Hardwired	implementing	RV32V	and	X	
– Micro-coded	Instruction	Decoder	for	custom	ISA	

•  Quad	Vector	ALU	(32	bits/ALU	–	fixed/float)	
•  136-bit	Register	Files	(1K	elements)	
•  Special	Function	Unit	
•  Texture	Unit	
•  Configurable	“local”	Frame	Buffer	



RV32X	Hardware	

32-bit	
DSP	

32-bit	
DSP	

32-bit	
DSP	

32-bit	
DSP	

MicroCoded
Controller	

And		
Hardwired	
Instruction	
Decode	and	
Execute	
Logic	

	
Splittable	136-bit	Graphics	Register	Files	

(1024	elements)	x	4	

Special	
Function	Unit	 Texture	Unit	Frame	Buffer	

uCode	
SRAM	
(8K)	

Level-1	
Cache	
(32KB)	



Scalable	Design	

RISC-V	
CPU	 RISC-V	GPU	

Stand-Alone	Low-End	
Graphics	Microcontroller	

Larger	
RISC-V	
CPU	

Used	as	“shaders”	in		
a	multicore	design	

or	



Novel	Ideas	
•  Fused	unified	CPU-GPU	ISA		

•  Configurable	registers	for	custom	data	types		
	
•  User-defined	SRAM	based	micro-code	for	application	defined	custom	

hardware	extensions		
–  Custom	rasterizer	stages	
–  Ray	tracing	
–  Machine	Learning	
–  Computer	Vision	

	
•  Same	design	serves	both	as	a	stand-alone	graphics	microcontroller	or	

scalable	shader	unit		
	
•  Data	formats	support	FPGA-native	or	ASIC	implementations		



Key	Points	and	Next	Steps	
•  This	is	a	very	early	spec	in	development,	subject	to	
change	based	on	stakeholder	and	your	input.	We	will	
have	a	discussion	forum	set	up.		

•  Immediate	goal	is	to	build	a	sample	implementation	
–  Instruction	Set	Simulator	
–  FPGA	implementation	using	open-source	IP	
–  Custom	IP	designed	as	open-source	project	
–  Demos	and	Benchmarks	

•  If	anyone	interested	in	helping	with	this	please	reach	
out	to	one	of	us.	Thank	you!	



Thank	You!	Questions?	

Atif	Zafar	
Atif@Pixilica.com	

	


